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A new method is described for the intensity distribution measurement of the diffuse radially sym- 
metrical small-angle scattering pattern distorted by the finite height of the direct beam of negligible 
width. This method consists in measuring the values of the intensities integrated along the lines 
parallel to the trace of the direct beam in the plane of observation. The true radial intensity distribu- 
tion (corresponding to the use of the direct beam of point-like cross section) derived from the distri- 
bution of these integrated intensities is ~maffected both by the intensity distribution along the 
height of the direct beam and by the finite height of the exploring slit of the detector used for the 
intensity measurements. 

I n t r o d u c t i o n  

The finite dimensions of the direct beam cross section 
in small-angle cameras imply a distortion of the true 
diffraction pattern which would be obtained with a 
beam defined by the pinhole system of infinitely small 
radius. By using the bent crystal monochromator, 
which focuses the beam into a line in the plane of 
observation, the distortion of the pattern due to the 
beam width is often sufficiently reduced (Guinier, 
1939; Guinier & Fournet, 1948). Then there remains 
the distortion due to the beam height. 

For the most common case of the radially sym- 
metrical true intensity distribution, the intensity J(x)  
measured in a point Px on the equator line is related 
to the true intensity I(x) by the equation 

J(x) =ff+: i(t)I ( ~(x~" + t2))dt , (1) 

which follows from Fig. 1. In  this figure, the trace of 
the direct beam in the plane of observation lies in 
the t-axis and the intensity distribution of the direct 
beam is given by the function i(t). 

Fig. 1. Measurement of the intensity scattered into a point Px 
on the equator line. The notation is explained in the text. 

A rigorous solution of equation (1) for I(x) was given 
only in one particular case of the direct beam of 

uniform intensity and infinite height by DuMond 
(1947) and by Guinier & Fournet (1947). In  this case 
the equation (1) takes the form 

J(x)  = c I ( l / ( ~ + t ~ ) ) d t  , (2) 

since i(t)=c for all values of t. The solution of (2) for 
I(x) is then according to Guinier & Fournet given by 

~ ( x ) = - ~ j  ° -  V(x~+u~) du, (3) 

where 

Z'(V(x2+u~)) = dJ(~(x2+u2)) 
dV(x2+u2 ) (4) 

and u represents an auxiliary variable of integration. 
This method can be applied only if the beam is of 
constant intensity along a distance at least twice that  
corresponding to the angle of diffraction, the dif- 
fracted intensity for which practically disappears. 

For the case of a direct beam of uniform intensi ty 
and finite height, equation (1) was solved by Kratky,  
Pored & Kahovec (1951) to a good approximation. 
Other approximate correction methods were put for- 
ward by Guinier & Fournet (1947) and by Frankl in  
(1950) for the beam of small height and 11niform 
intensity. 

The intensity distribution measured along the 
equator line must be corrected for the finite height of 
the slit of the counter or of the photometer used for 
the intensity measurements. This correction is negli- 
gible in the case of ' infinite'  uniform direct beam when 
this height is sufficiently small (DuMond, 1947). For 
a certain ratio of the beam to the receiving slit height 
an approximate correction method was given by 
Gerold (1957). 

The true intensity distribution I(x) derived from 
the intensity measured according to the method 
described in this paper seems to be unaffected both 
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by  the form of the direct beam intensity distribution 
i(t) and by the height of the receiving slit of the de- 
tector. 

Descr ip t ion  of the m e t h o d  

The basic idea of the proposed method is tha t  the total  
intensity scattered into the line parallel to the direct 
beam height is proportional only to the total  intensity 
of the direct beam and is unaffected by its intensity 
distribution. 

This follows from the fact tha t  the resulting small- 
angle pat tern  can be thought to be formed by super- 
posing the true diffuse intensity haloes with their 
centers continually distributed along the trace of the 
direct beam in the plane of observation. The intensity 
of the individual haloes are proportional to the inten- 
sity of the direct beam in their centers. I t  is then 
obvious that  by varying the intensity distribution of 
the direct beam with its total  intensity kept constant, 
the profile of the scattered intensity along any line 
parallel to the trace of the direct beam changes too 
but  the total intensity scattered into tha t  line remains 
constant. Without  changing the integrated intensity 
scattered into that  line, the total  intensity of the direct 
beam can be thus considered to be concentrated into 
an arbi t rary point on the trace of the real direct beam. 
This corresponds to the use of a direct beam of a point- 
like cross section, the intensity of which equals to the 
total  intensity of the real beam. By using this direct 
beam and by shifting uniformly the detector with a 
point aperture along a line parallel to the trace of the 
real direct beam, the same intensity contributions are 
recorded as by measuring the scattered intensity in 
an arbi t rary point on the same line and by a parallel 
shift of this direct beam with the same velocity along 
the trace of the real direct beam. The second case is 
obviously analogous to the measurement of the scat- 
tered intensity in one point by using an infinite direct 
beam of uniform intensity. 

$x 

t ~ xdE(x't'sz) 

i ( t ) _ J  s ~t 

V 
Fig. 2. Measurement of the intensity scattered into a line 

(sx-axis) parallel to the trace of the direct beam (t-axis). 
The notation is explained in the text. 

These arguments lead thus to the important  result 
tha t  by measuring the integrated scattered intensity 
along various lines parallel to the trace of the direct 
beam the obtained intensity distribution E(x) is 
identical with the intensity distribution J(x) measured 
by  the usual technique in the points on the equator 
line by using the infinite direct beam of uniform 
intensity equal in each point to the total intensity of 
the real direct beam. Because of this equivalence the 
true intensity distribution I(x) can be derived from 
E(x) by the rigorous t reatment  of Guinier & Fournet  
(1947) mentioned in the introduction. This is then 
simply given by the equation (3) in which E(x) is 
substi tuted for J(x) and c is put  equal to the total  
direct beam intensity. 

This result obtained in an intuitive manner can be 
easily verified by the calculation. Let the distribution 
of direct beam intensity be given again b y  i(t). The 
intensity of tha t  part  of the direct beam which after 
passing through the sample intersects the plane of 
observation in an element dt in height t is schematically 
represented in Fig. 2 by the corresponding shadowed 
region. Let us consider the contribution of this direct 
beam element to the intensity scattered into the 
element dsx of the sx-axis, the sz-axis being situated 
in the plane of observation, parallel to and distanced 
by x from the t-axis. This intensity contribution is 
indicated in Fig. 2 by another shadowed region in the 
height sx on tha t  axis. Taking into consideration tha t  
the distance of the element dsx from the element dt 
is r = / [ x 2 + ( s x - t ) 2 ] ,  the amount of this diffracted 
intensity contribution expressed in terms of the true 
intensity function I(r) and the direct beam intensity 
i(t) will be given as follows: 

dE(x, t, s~)=i(t)I(~[x2+ (sx-t)~J)dtdsx . 

The intensity contribution of that  direct beam element 
after its passing through the sample into the whole 
length of the sx-axis is then given by 

dE(x, t) = i(t)dt f+: I( ~[x~ + (sx-t)~J)dsx . 

The lat ter  expression can be rewritten by  substituting 
w for s x - t  in the integral in the form 

dE(x, t) = i(t) dt f~: I( ~(x2 + w2)) dw . 

The total  intensity scattered by the whole irradiated 
volume of the sample into the sx-axis is then simply 

E(x)= f~:i(t)dtI~:I(~(x2+s~))dsx. (5) 

In (5) the notation w for the integration variable in 
the second integral was altered for sx. By com- 
paring (5) with (2) a similar expression to (3) can be 
immediately written for I(x): 
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i ( x )  = -  1 l °°E'(V(x~+u~)) d~ (6) 
7~ i'(t) dt o V( x2 + u 2) 

where analogous definition (4) holds for E'(~/(xe + ue)). 
The total  direct-beam intensity given by the first 
integral on the right hand side of equation (5) need 
not  be known for relative measurements of small-angle 
scattered intensity. 

I t  is furthermore obvious tha t  the true intensity 
distribution I(x) derived from E(x) will not be in- 
fluenced by the height of the receiving slit of the 
counter used for the intensity measurements. This 
follows from the fact that  the values of E(x) are 
obtained by integrating the scattered intensity in the 
direction of the larger dimension of the counter slit. 
This height thus represents only a factor enlarging or 
reducing all measured intensity values in the same 
proportion. By measuring the diffuse intensity fl'om 
small-angle diffraction photographs, the height of the 
photometer exploring slit must be chosen small enough 
for the density to be considered approximately con- 
stant  in all points along the slit height for each setting. 

I t  should be noted that  for small scattering angles 
the variation of the sample thickness effects the values 
of E(x) approximately in the same way as the modula- 
tion of i(t) so tha t  it introduces only a little error into 
the derivation of I(x). 

For practical measurement of the small-angle scat- 
tered intensity by this method, the counter assembly 
should be provided with the automatic t ranslatory 
movement of constant velocity perpendicular to the 
counter axis and parallel to the large dimension of the 
slit. In  this way, the scattered intensity is integrated 
along a particular Sx-axis. After every integration of 
intensity along the Sx-axis the counter is turned 
about an axis passing through the sample and parallel 
to the large dimension of the counter slit to perform 
the same measurement with x altered. The interval 
scanned by the counter along the sx-axis must be 
chosen sufficiently large for the scattered intensity to 
achieve its background value in the whole length of 

the entrance slit in the upper and lower positions of 
the counter. The background intensity should be sub- 
tracted in the usual manner. In special cases when the 
vertical extension of the measurable small-angle scat- 
tered intensity does not exceed the allowed height of 
the entrance-slit opening, the counter itself integrates 
the scattered intensity along the Sx-axis, the trans- 
latory movement being not necessary. The background 
intensity will be subtracted simply after shifting the 
counter into the background intensity region. 

Another kind of comparison of the measured and 
calculated angular intensity distribution of small-angle 
X-ray scattering should be mentioned in colmection 
with the method described. The most easy theoretical 
calculations of the angular intensity distribution for 
various systems giving the small-angle scattering are 
claimed to be those which can be compared with the 
true scattering function I(x). As it was shown by 
Schmidt (1955), the intensity distribution correspond- 
ing to the small-angle pattern,  distorted by using the 
infinite uniform line-like direct beam, is almost as 
easy to calculate as the perfect collimation function. 
These 'slit-corrected functions' can thus be imme- 
diately compared to the measured values of E(x) 
without the necessity of the somewhat tedious con- 
version of E(x) to l(x) by the relation (6). 
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